According to a BNEF report, humanity will need approximately 290 million more electric vehicle (EV) charging points by 2040 to keep up with the growing global EV fleet. Many of those charge points will generate revenue for owners and improve business where they’re installed—EV drivers often shop and snack while their cars charge up.
Whether you’re in real estate, hospitality, retail, or food service, you’re probably thinking about EV chargers. Installing and maintaining them, however, can be expensive and complicated. Thankfully, there are ways to reduce total cost of ownership (TCO) for high-speed EV charging points.
This article outlines the fundamentals of deploying an EV charge point and ways you can save money throughout the process. It covers:
Later we’ll dive deeper into ways to build and deploy charging systems, exploring technical details, regulatory issues, and cost-saving strategies.
You might be tempted to rush into installing a charger in your business’ parking lot or your apartment building’s parking garage, but there are many things to think about before you break ground.
The Tritium team can help you research your site before you make a purchase. We have experts around the world who know local regulations, have relationships with utility companies, and can even help estimate traffic in and around your charge site. Contact us to schedule a consultation.
After site planning, you’ll need to choose your charging hardware. You may be tempted to purchase the most affordable charger, but entry level chargers can end up costing you more over time. That cheap charger may not be able to handle tomorrow’s EVs or present more issues, and you’ll be upgrading before you know it.
When shopping for chargers, look for modularity, scalability, and upgradability. Even if you’re starting small, choose a charger or chargers that can grow to meet future demand. Tritium’s RTM and PKM lines of chargers can be upgraded over time to deliver more power to more EVs, which means you can start small and develop your charging site over time.
Tritium PKM chargers can also share charging infrastructure. DC fast chargers need high-power electronics to turn the alternating current (AC) from the power grid into direct current (DC). This equipment is housed in a power cabinet, and most DC fast chargers need dedicated power cabinets to run. A PKM charger can share a single power cabinet with up to three other PKM chargers, reducing the overall cost of the charging system and making it easier to expand your charge point when you need to.
Chargers should also be able to weather the elements. Look for chargers that are sealed and rated for rain, wind, and dust. All Tritium charging stations are IP65 rated, meaning they meet strict standards for water and dust resistance.
Additionally, electric vehicles use a variety of connectors. Pioneering EVs like the Nissan Leaf used CHAdeMo (“CHArge de MOve” which Japanese EV organizations translate as “charge for moving”). Now most EVs use Combined Charging Standard (CCS1 or CCS2) connectors. Europe has standardized CCS2 charge connectors, while the US uses CCS1.
Also look for modern features like Plug and Charge integration, a communication protocol that lets drivers simply plug their EVs in for a charge without having to enter billing information—billing info is stored in the car itself. Standard payment processing should also be available for vehicles without Plug and Charge capabilities.
There’s a lot to learn about DC charger technology before you make a purchase. Working with an expert can make the process much easier and safer.
There are many government, energy company, and non-profit incentives for EV charging infrastructure, ranging from tax credits to rebates to grants. These programs were created to speed up the transition from internal combustion cars to EVs and to help EV owners who might not have access to a charger at home.
And there are many programs and incentives like this across the globe.
These are just a few of the countries and groups that are helping to meet government targets to phase out internal combustion cars and build out EV charging infrastructure. The best way to find incentives in your area is to talk to an expert. At Tritium we can help you find EV charger incentives for your region.
Most people think of EV chargers as appliances—you plug them in and they just work. But DC fast chargers handle a tremendous amount of power and generate a lot of heat. Over many charges, components can be at risk of failure and will need to be replaced. Chargers will need regular scheduled maintenance just like any other machine. Keep this in mind when choosing your equipment. Is it easy to repair? Can repairs be done in the field? Maintenance costs can add up over time and it pays to choose a charger that is designed to be easily maintained.
Fast chargers also run complicated software that interfaces with multiple networks, including utilities networks, payment processing networks, and charging point operator networks. That software requires updates and maintenance just like your PC. What kind of software support does the manufacturer offer? Think long term. Tritium software not only handles car charging, but also works with payment processing and utilities networks. We have dedicated software engineers who work to keep up with the latest developments in EVs, battery tech, and networks.
There is a wide range of positive economic and environmental aspects of the expected growth in the deployment of EV charging infrastructure worldwide. As the world shifts towards electrification, there are many options and programs available to assist operators with cost-effective deployments of DC fast-charging solutions. Choosing a qualified partner can be the best way to ensure you get the ultimate return on your investment.