Will Charging Infrastructure Create or Avoid Bottlenecks?
By Matt Stace, Senior Sales Manager, Tritium
Tritium’s senior sales manager for Europe Matt Stace recently sat down with sustainable transport experts Electronomous to talk about EV charging in Europe. This article appeared in their annual publication “Global Thought Leaders’ Predictions for Mobility 2023.”
Norway, one of the earliest consumer markets to embrace electric vehicles, has steadily increased the number of full or partial electric passenger vehicles registered over the last decade. While Norway now leads the world with fully electric vehicles comprising 20.9% of the national vehicle fleet, the rate of growth over the last 10 years has allowed the orderly establishment of charging infrastructure such that the ratio of electric vehicles to chargers has actually fallen. Norway has largely avoided charging bottlenecks.
Multiple data sources confirm a much more rapid increase in the number of electric vehicles in other markets. EVs in Germany, for example, moved from 2% to 10% market share in just 12 months, less than half the time taken in Norway. Denmark recently surpassed 100,000 registered EVs in 2022, and more than 21% and 33% of new vehicles registered in Denmark and Sweden during 2022 were fully electric.
In cities where drivers have no access to at-home charging, it is highly likely that charging bottlenecks will appear if a corresponding increase in the number of public chargers does not occur. To meet the twin goals of maximizing the number of available plugs for drivers and ensuring an adequate return on investment for operators, it is important that operators invest in chargers that provide a power level that matches the time a driver expects to spend at the location.
Battery chemistry, state of charge, software and temperatures all determine how fast an EV charges, rather than the maximum power output of the charger. In a type of charger arms race, some operators are making the expensive mistake of installing chargers with ever increasing rates of power output regardless of the charger’s location. An average passenger vehicle during an average charging session absorbs power at a much lower rate than the peak output available from many such chargers. A recent study in Denmark found that a group of new electric cars charge at an average rate of just 62kW.
For all but a few operators, investing in high-power chargers in locations where drivers do not require it will come at the expense of providing more plugs to meet the needs of the growing car fleet. There is a strong financial case to be made that installing a larger number of mid-power charging stations sufficient to meet the real-world needs of a growing EV fleet is a far more capital efficient way to invest in charging infrastructure and to avoid the type of charging bottlenecks that drivers hate. If given the choice, most EV drivers would prefer to have access to some power — even at less than the peak rate their vehicle can accept for a short period — than wait in line for a high-power plug to be available.
Building charging infrastructure that thoughtfully matches potential power output to real-world needs rather than a single-minded focus on providing high-power chargers with capacity that may never or rarely be used, is one way to ensure that drivers do not experience bottlenecks as the fleet of passenger vehicles electrifies.
Want to learn how capital efficient EV charging systems can work for you? Contact Tritium today!